# Thermal Transient Computational Information Software Version 3.2

1. Acquired Data

| Symbol         | Description                                          |
|----------------|------------------------------------------------------|
| V <sub>n</sub> | acquired voltage samples, sampled and quantized V(t) |
| In             | acquired current samples, sampled and quantized I(t) |
| t <sub>n</sub> | acquired sample times                                |

#### 2. Thermal Transient Computation

| Symbol/Equation                                                     | Description                                                     |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------|--|
| $R_n = V_n / I_n$                                                   | sampled bridgewire resistance                                   |  |
| $Vcorr_n = R_n * I_{test}$                                          | corrected voltage, $I_{test}$ = requested test current          |  |
| $P_{VA}(), P_{IA}(), P_{RA}()$                                      | regression predictors for V(t), I(t) and R(t) computed          |  |
|                                                                     | over $R_A = [t_A, t_A + \Delta t_A]$                            |  |
| $P_{VB}(), P_{IB}(), P_{RB}()$                                      | regression predictors for V(t), I(t) and R(t) computed          |  |
|                                                                     | over $R_B = [t_{pulse} - t_B - \Delta t_B, t_{pulse} - t_B]$    |  |
| $V_{TR} = P_{VB}(t_{pulse}) - P_{VA}(t_{TR})$                       | Thermal Response voltage                                        |  |
| $R_0 = P_{RA}(t_{start})$                                           | initial (cold) resistance                                       |  |
| $\Delta R = P_{RB}(t_{pulse}) - P_{RA}(t_{start})$                  | total change resistance. Note that the $\Delta R$ change in     |  |
|                                                                     | resistance does not correspond to the V <sub>TR</sub> change in |  |
|                                                                     | voltage.                                                        |  |
| $P_{RA}^{-1}()$                                                     | inverse function of P <sub>RA</sub> predictor                   |  |
| $\tau = P_{RA}^{-1}(P_{RB}(t_{pulse}))$                             | thermal response time constant                                  |  |
| Notes to At the area program mable values. Please refer to Figure A |                                                                 |  |

Note:  $t_A$ ,  $\Delta t_A$ ,  $t_B$ ,  $\Delta t_B$ ,  $t_{TR}$  are programmable values. Please refer to Figure A.

| Default | settings: |
|---------|-----------|
|         | - 0       |

| $t_{\rm A} = 72.5 {\rm uS}$ | $\Delta t_A = 145 uS$                  | $t_{\rm TR} = 100 {\rm uS}$ |
|-----------------------------|----------------------------------------|-----------------------------|
| $t_{\rm B} = 0 \mathrm{uS}$ | $\Delta t_{\rm B} = 362.5 \mathrm{uS}$ |                             |

## 3. Heat Model Analysis

| Symbol/Equation $lpha_{\scriptscriptstyle BW}$                           | Description<br>bridgewire temperature resistance coefficient |
|--------------------------------------------------------------------------|--------------------------------------------------------------|
| $\Theta = \frac{1}{\alpha_{BW}} \cdot \frac{\Delta R}{R_0}$              | final bridgewire temperature offset from ambient             |
| $\overline{PA} = \left[P_{1A}(t_{AMID})\right]^2 \cdot P_{RA}(t_{AMID})$ | average dissipated power over range $R_{\rm A}$              |
| Slope( $P_{RA}$ ), Slope( $P_{RB}$ )                                     | $P_{RA}$ and $P_{RB}$ predictor slopes                       |
|                                                                          | (continued on next page)                                     |

## **DESIGN CONSULTANTS**

Thermal Transient Computational Information. Page 2

$$C_{P} = \frac{E_{A}}{\Delta T_{A}} = \frac{\overline{P_{A}} \cdot \Delta t_{A}}{\frac{\Delta R_{A}}{R_{0}} \cdot \frac{1}{\alpha_{BW}}} = \overline{P_{A}} \cdot R_{0} \cdot \alpha_{BW} \cdot \frac{\Delta t_{A}}{\Delta R_{A}} = \alpha_{BW} \cdot \frac{\overline{P_{A}} \cdot R_{0}}{Slope(P_{RA})}$$

 $C_p$  of the bridgewire

$$\overline{P_B} = \frac{E_B}{\Delta t_B} = \frac{C_P \Delta T_B}{\Delta t_B} = CP \frac{\frac{1}{\alpha_{BW}} \cdot \frac{\Delta R_B}{R_0}}{\Delta t_B} = \frac{C_P}{\alpha_{BW} \cdot R_0} Slope(P_{RB})$$

average dissipated power over range  $R_A$ 

$$\gamma = \frac{\overline{P_A} - \overline{P_B}}{\Theta} \qquad \text{thermal conductance in} \left[ \frac{Watts}{\deg C} \right]$$

$$IF_n, \quad \left( \frac{dIF}{dt} \right)_n \qquad \text{filtered I}_n \text{ and } \left( \frac{dI_n}{dt} \right)_n, \text{ respectively}$$

$$RF_n, \quad \left( \frac{dRF}{dt} \right)_n \qquad \text{filtered R}_n \text{ and } \left( \frac{dR_n}{dt} \right)_n, \text{ respectively}$$

$$Tn = \left(\frac{RF_n}{R_0} - 1\right) \cdot \frac{1}{\alpha_{BW}} \qquad \left(\frac{dT}{dt}\right)_n = \frac{\left(\frac{dRF_n}{dt}\right)_n}{R_0} \cdot \frac{1}{\alpha_{BW}}$$

bridgewire temperature

$$P_n = IF_n^2 \cdot RF_n$$

total dissipated power

$$Cp_n = \frac{E_n}{\Delta T_n} = \frac{Pn}{\frac{\Delta T_n}{\Delta t_n}} = \left(\frac{dT}{d_t}\right)_n$$
 instant  $C_p$  of the bridgewire

$$P_{BW_n} = \frac{E_{BW_n}}{\Delta T_n} = \frac{CPn \cdot \Delta T_n}{\Delta T_n} = CP_n \cdot \left(\frac{dT}{dt_n}\right)_n \qquad \text{brid}$$

ower consumed on heating the ridgewire proper

 $P_{PH_n} = P_{n-}P_{BWn}$  power dissipated into the rest of the structures

#### **DESIGN CONSULTANTS**

